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Mathematical Statistics: Fringe or Frontier?

R.D. Gill

1. AN OVERVIEW

1.1. Introduction

T'his essay contains a personal view of the place of mathematical statistics
In mathematics and science, with an eye to the future. Statisticians are
sometimes paid to make predictions, but they are trained to be careful and
hedge their bets by giving an indication of its uncertainty. I shall be careful
not to be specific, as far as the future is concerned. Most of the essay
1s concerned with the recent past (which surely contains the seeds of the
future) and is built around some anecdotal case-studies of fascinating but
In various senses paradoxical developments in the field.

1.2. What 1s mathematical statistics?

Statistics is concerned with analysing data. especlally in the presence of
randomness, whether due to measurement errors, deliberate sampling from
a larger population, biological or behavioural variability, or whatever (more
on this later). Mathematical statistics is the mathematical theory of how
to do this. It codifies and organizes strategies for learning from data and
for drawing conclusions about the real world phenomena which generated
them. It is deeply connected with, and partly grown out of, probability
theory, concerned with how to calculate probabilities of outcomes in ran-
dom structures. Since mathematicians tend to become fascinated with the
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abstract structure in the subject before them for its own sake, modern math-
ematical statistics contains many deep and beautiful mathematical results
whose connection with real life data analysis can be tenuous. ‘Applications’
may only turn up later, or the theory may help in retrospect to explain why
certain practical procedures work as well as they do.

1.53. Position within mathematics

As arelatively young branch of mathematics, uncertain of its independence,
1ts practitioners often have ambivalent feelings about their relationship with
mathematics proper. And real mathematicians may not always consider
statistics as ‘within the fold’. A large wall poster still adorns the corridor of
many a (German university’s mathematics department, giving a well known
publishing house’s schematic plan of the whole of mathematics. It took me
some time to locate my own discipline in this grand scheme of things. In
the middle of the picture were boxes labelled with names built of permu-
tations of the words algebra (or algebraic), analysis (analytic), geometry
(geometric), number, and theory. These boxes were connected with a dense
network of arrows indicating connections in all directions.

As one moved away from the centre the connecting arrows became less
dense, the names became more varied, less ‘pure’, less abstract. A distant
corner contained the box ‘mathematical statistics’, connected by a single
arrow from probability theory. This in its turn was only linked to the rest of
mathematics by arrows from ‘measure theory’ and ‘potential theory’. Only
after tracing back through many links did one arrive back at the centre of
mathematics.

T'his picture is a caricature to be sure, but it reflects a common view of
statistics held both by mathematicians and by other scientists. Statistics
1s a bit dirty and messy, a necessary evil perhaps; but from the point of
view of those ‘at the heart’ it is a fringe event. Renowned mathematicians
have occasionally called for abolishment of the whole discipline. The inven-
tor of the Kalman filter—a piece of mathematics without which man would
not have set foot on the moon—argued that ‘chance’ does not exist and
therefore statistics is meaningless. Outsiders delight in the sometimes bit-
ter controversies between different schools of statistics: subjectivists versus
objectivists, exploratory data analysts versus decision theorists, and so on.
S0 1s statistics a marginal activity?

A rather different picture is given by a table published a book by N.J.
Higham [1]. The table gives the six most often cited papers in mathematics
and computer science, statistics included. Four of the six are actually papers
in statistics, published in more or less theoretical journals (Journal of the
American Statistical Association, Journal of the Royal Statistical Society);
the other two are papers on numerical mathematics. (One of these two—
introducing the fast Fourier transform-—by an author who later went on
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Figure 1. An important aspect of medical treatment of severe diseases like cancer is to
observe survival times after treatment and draw statistical inferences from these observa-
tions. The curves drawn here (Kaplan-Meier estimates), show the survival probabilities
after operation for malignant melanoma for 205 patients, stratified by sex. (Photo:
courtesy Academisch Medisch Centrum Amsterdam.

to be the founder of exploratory data analysis). Perhaps I should mention
that though the cited papers were taken from mathematics and computer
science, the ‘citers’ could have been in any discipline.

1.4. Survival analysis

Let me focus on two of these most cited papers [2.3]. The second most of-
ten cited paper is by E.L. Kaplan and P. Meier (1958) and number four, by
D.R. Cox (1972); both are concerned with survival analysis: the branch of
statistics devoted to the special problems of analysing life-times, times till
events, for instance the length of the disease-free period after cancer treat-
ment in the life of cancer patients. These papers proposed new statistical
techniques which became part of the standard repertoire of a huge army of
cancer researchers.

But it was not just medical researchers who used these results and cited
them alongside standard laboratory methods, as is their tradition. The
papers just mentioned are cited enormously often by mathematical statisti-
cians. T'he new techniques, developed to take account of a rather common
teature of survival data, namely that many observations are censored (in
other words, only known to exceed some value determined by the closing
date of the study), relied on flashes of insight on the part of their inventors
which could not be supported by then available mathematics. The special
teatures of this kind of medical statistics has been an inspiration and a chal-
lenge to mathematicians since those key papers. Even now remarkable (for
the insiders: amazing) mathematical properties are being discovered about
the Kaplan-Meier survival curve estimator though it has become such a
commonplace item in the statistician’s toolbox that its picture has been
seen on the front page of major Dutch newspapers. The work of the mathe-
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maticians has also been directly used by practitioners, and survival analysis
1s now a large established and rich area of statistics.

The development of survival analysis did not rely solely on the then avail-
able resources of mathematical statistics. A rather abstract, recently devel-
oped and then still incomplete part of probability theory came to play a
major role in understanding and developing the analysis of censored sur-
vival data: namely continuous time martingale theory and the theory of
stochastic integration. I won’t start to explain these terms but let me em-
phasize that this was pure, pure mathematics, initially as unintelligible to
mathematical statisticians (let alone, applied statisticians) as it will be to
most readers now.

1.5. Applications and new theory
T'hose landmark contributions in survival analysis also contained the seeds of
major new developments in statistics going far beyond the original medical
setting. The theory and practice of ‘semiparametric models’ had its roots
there. This way of doing statistics was taken up by applied researchers in
econometric modelling and in psychometrics; it has fueled intense theoretical
research on building a large-sample theory for statistical inference in infinite-
dimensional sample spaces.

T'his story shows that from an unsuspected corner of applied statistics an
impulse can come which leads to redrawing the map of theoretical statistics

and revitalising its connections with other areas of mathematics. Is that a
once-off event? By now ancient his-

tory (the success story of the long-
gone seventies and eighties)?

‘The answer is no. More recently—
some would say, this 1s the suc-
cess story of the present decade-—fi-
nancial mathematics developed deep
connections with probability the-
ory; indeed, the part of probabil-
1ty theory I just mentioned, the Ito
stochastic calculus. The famous
Black-Scholes paper (4] on how to
price options was not only part of a
new financial business but also part
of the discovery of new deep results
in probability theory. (Actually one
may wonder how much recent finan-
Figure 2. The day after Black Friday, Oc- (i3] catastrophies have been caused
tober 13, 1989. (Photo: N. Tully-Sygma. by use or mis-use of these fundamen-
Courtesy ABC Press.) tal advances.) It is easy to list many
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other areas where new developments in science, technology and society have
catalysed (and been effected by) revitalising activity in statistics and prob-
ability.

I would like to concentrate on two such stories. In each case the paradox-
ical fact is that the initial event was inimical to classical statistical theory
(the abolishment crowd would lick their lips). It says something for the
vitality and mtrinsic need for a science of how to analyse random data that
In nelther case was this the end of statistics.

2. FIRST STORY: THE BOOTSTRAP

In 1979, B. Efron introduced into statistics his new ‘bootstrap method’ |5].
The essential idea of the method is to use computer simulation (in fact, a
Monte-Carlo experiment, using computer generated randomness) to evalu-
ate the accuracy of a statistical estimation procedure. ‘The real world’, from
which random data has been obtained in order to learn about it, is replaced
by an artifical ‘bootstrap world’ on the computer, totally under the control
of the experimenter. In the bootstrap world random samples are repeatedly
drawn; the variability in the estimate which i1s repeatedly evaluated from
each new artifical dataset (an estimate of a known bootstrap world quan-
tity) is a guide to the variability of the statistician’s actual estimate which
she calculated from the actually available real data in the real world.

There 1s a little snag in this description: the bootstrap world has to be a
faithful copy of the real world in order to make the simulation experiment
appropriate, but the real world is not known: to find out about it was pre-
cisely the whole purpose of the exercise. No matter, we are statisticians,
so we just use our data to estimate it. Efron’s audacious proposal was to
do this in the most primitive way available: simply use the data points as
they are as if only these values, and in precisely these proportions (each
value equally likely), existed. The method then reduces to taking a sample
of the same size as the original data-set from the original dataset (a ran-
dom sample ‘with replacement’, so any particular data value can reappear
a number of times in the new sample), recomputing the statistic of inter-
est, repeating this procedure time and time again, and extrapolating the
observed variability in the outcomes to the real world.

The method caught on like wild-fire. As the ambitions and sophistica-
tion of statisticians and the speed of their computers had increased, more
and more complicated things were being done with data, and it was be-
coming less and less easy to use traditional means (analytic calculations in
special models, or large-sample approximations) to judge the reliability of
the results. Now all one had to do was leave the computer to repeat the
original calculation of interest a thousand times on easily made artificial
data sets, and you are done. One is then also liberated from only using
methods for which explicit analytic calculations are feasible. Efron’s grand
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claim was that his method abolished the need for mathematical analysis in
statistics, replacing it by brute force computing power, and freeing the users
of statistics from the traditionally available recipes, which were becoming a
straight-jacket. Now anyone can creatively decide what he or she wants to
do with the data, and leave the bootstrap to furnish the standard errors,
confidence intervals, significance levels or whatever.

The method was so audacious that many people a little further from
statistics refused to take it seriously. How could you get more information
from data by throwing in extra random variation generated by yourself on
your own computer? A senior research manager at the mathematics section
of a well known Dutch multinational which at the time did not employ
statisticians once told me that the reason for this was that nothing new had
happened in statistics for the last forty years. I mentioned the bootstrap as
a counter-example: but that was such a stupid idea it only confirmed his
belief. Now the same company has belatedly caught on to the fact that a
lot has happened, a lot of great value in an industrial research environment,
and 1s rapidly building up its own sizeable internal statistical consultation
unit.

Interestingly the bootstrap revolution did not put mathematical statisti-
cians out ot work after all. Along with practical success stories, came case-
studies where the bootstrap gave stupid answers. In any case, why should
it work at all? How well does it work”? Can one make it work better? An
explosion of activity took place with all kinds of variants being proposed of
the original easy to understand methodology, in order to make the method
more reliable, more flexible, more accurate, less computer-intensive (!), and
so on. Some of the mathematical tools needed to really understand why or
how the bootstrap works turned out to be linked to the traditional central
activities of pure probabilists, nowadays somewhat looked down on: higher
order corrections to the famous central limit theorem, which says that sam-
ple averages are approximately normally distributed. Other mathematical
tools were connected to fundamental advances in pure mathematics, con-
nected to the very abstract topic ot ‘probability in Banach spaces’. Yet
other tools were needed from the theory of asymptotic statistics.

In a sense the bootstrap liberated applied statisticians from making te-
dious analytic calculations but it required a deeper and more creative level
of mathematical activity, namely to understand and categorise the funda-
mental structure of diverse statistical methods, and their relation to funda-
mental probabilistic limit theorems.

3. SECOND STORY: QUANTUM STATISTICS

My other story is a story perhaps just starting, namely a new involvement
of statistics in quantum physics. Let me begin this story on what may seem
a philosophical i1ssue, namely the question of whether randomness actually
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exists. This is indeed a debatable
poimnt! A tossed coin or dice, for
probability theory the archety-
pal random experiment, is just a
simple dynamical system. Small
differences in the initial vertical
speed and angular momentum of
the coin or dice are exponentially
quickly magnified to large differ-
ences 1n 1ts final position. Noth-
Ing random happens at all. The Figure 3.
randomness in the initial condi-

tions is presumably completely deterministically explainable in similar terms.

I'he randomness of the bootstrap samples on the computer are also not ran-
dom at all: a computer slavishly carries out its instructions: a random num-
ber generator is a sophisticated but completely deterministic way of ‘mixing
up’ initial conditions so that what comes out looks randomnn. (Interestingly
enough, the modern theory of random number generation at the same time
links fundamental ideas from statistics, from number theory—the heart of
pure mathematics—and from the theory of computational complexity—the
heart of theoretical computer science.) Now there is one place and I believe
one place only where randomness really happens in the real world, and that
1S at the quantum level. Quantum physics describes the completely deter-
ministic and continuous evolution (according to Schrédinger’s equation) of
the state of quantum systems (systems of fundamental particles, photouns,
etc.). From the state at a given time can be calculated the probability distri-
bution of the results of measurement of the system. To give some exanmples:
a particular photon either does or does not pass a given polarization filter:
an electron is either found or not found in a given region of space. Quantum
theory tells us what the statistics would be like of many repetitions of these
experiments: in a certain percentage of times, a photon passes the filter:
In a certain percentage of times an electron is registered in a particular re-
gion of space. Radioactivity as measured by a Geiger-counter, showing a
seemingly random series of time-points of emissions of individual particles,
1s another classic and nowadays even familiar example: an example where
the randomness is not averaged out into the statistics of many particles but
where 1t 1s still present at the macroscopic level.

Now a little thought shows up a huge paradox in the theory. A mea-
surement device (e.g., a photo-multiplyer set up to allow one to decide if
a single photon does or does not go through a polarization filter) is itself
just a large collection of elementary particles. The device together with the
photon being measured together form a single quantum system, which de-
velops deterministically and completely smoothly according to a huge com-
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plicated Schrodinger’s equation. Nothing actually ‘happens’, and certainly
nothing happens or does not happen by chance. Similarly, a radioactive
substance and a Geiger-counter together are also just one large assemblage
of fundamental particles whose joint state is evolving deterministically and
continuously according to the appropriate Schrodinger equation.

A traditional way out of the paradox is to suppose that things only ‘hap-
pen’ when a conscious observer looks at the system. Everything now be-
comes subjective, or circular, or an infinite regress threatens. What hap-
pens when an observer observes another observer? This is the famous
Schrodinger’s cat paradox, which hinges around the question of whether
a cat, which is killed if and only if a certain radioactive decay takes place
within a certain period of time, actually does die or not at the moment of
the radioactive decay, or if this only happens when a human observer looks
into the cage to see what has happened. This paradox forms part of R.
Penrose’s thesis (developed in his books ‘The Emperor’s New Mind’ [6] and
its sequel |7]) that human consciousness is essentially a quantum physical
phenomenon and therefore artificial intelligence based on classical models
of computing is impossible!

T'his state of affairs causes no difficultiesin practice: the theory makes pre-
dictions which so far have agreed with all empirical findings. And theory
which has consequences for laboratory experiments also has consequences
for everyday technology. Technological advances are leading to experiments
and experiments are leading to technological advances in which truly quan-
tum phenomena have an impact on our everyday world. ‘Quantum cryp-
tography’ 1s a practical way of transmitting messages safe from eavesdrop-
pers which depends on paradoxical quantum phenomena (so-called entan-
gled states) which have fascinated philosophers and visionaries and cranks
for years; right now programs for quantum computers are being designed
which for instance will factor large numbers in polynomial time by sheer
brute force, simultaneously trying out all the possible factorizations, coded
as a quantum superposition of states. Physicists predict that within five
years the first real quantum computer will have been built; it will be able to
successfully factor the number ‘fifteen’. This is not a joke: the first digital
computer was also not of much practical use. (When the first computer in
T'he Netherlands was demonstrated to the Minister of Science, the program
1t ran was a program to produce a random number. That way the minister
would not notice if the computer had actually worked properly or not!)

S0 nowadays quantum physicists are manipulating systems of a really
small number of fundamental particles. These systems exhibit random be-
haviour of a truly fundamental character: this is randomness which cannot
be explained by recourse to hidden but deterministic variation at a lower
level (this is the content of ‘no-go hidden variables theorems’, connected to
Bell’s inequalities, the Einstein-Podolsky-Rosen paradox, and so on).
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One would expect that a physical theory so closely involved with prob-
ability would be well-known and well-studied by probabilists and statisti-
cians; and that these experts would even have a big contribution to make.
Strangely that is not the case. Actually just before Kolmogorov in 1933
succesfully axiomatized classical probability theory (the probability theory
of dice and coin tosses, of insurance companies and casinos), John von
Neumann axiomatised quantum probability. The mathematical structure
was more general, and much more abstract looking than ordinary probabil-
ity. Physicists (for instance R. Feynman in the famous Feynman lectures,
see also [8]) and later on mathematicians have continually claimed that
‘quantum probability is a different kind of probability’. The field seems far
from ordinary probability and statistics, and a huge barrier has been set
up between them. The physicists perhaps did not really understand the
mathematical modelling involved in ordinary probability; and pure math-
ematicians who were able to get a feeling for the mathematical structure
of quantum mechanics—and who in recent years have developed an impos-
ing theoretical structure called quantum probability theory—probably had
so little feeling for physics that they accepted the statements of famous
physicists like Feynman without questioning. The many paradoxes of the
field anyway are enough to make any mathematician shy of saying anything
about the practical side of the subject: he or she will just prove theorems
in the abstract mathematical playground which physics provides.

In my opinion quantum probability is not a different kind of probability
at all. My personal opinion is that quantum reality is a rather different
kind of reality to ordinary reality (Einstein has said: reality is weirder than
we Imagine; weirder than we can imagine), the challenge is to classical
deterministic thinking rather than to probability. Moreover the field is ripe
for a new involvement of statistics. Already physicists are discussing ways
of learning about the state of a quantum system from the (random) results
of measurements which can be made on it. A couple of books and a fast
growing number of papers exists on the topic (see, e.g., |9, 10, 11}). So
far it is developing independently of modern statistics. Physicists are busy
reinventing classical ideas from statistics: this is not a bad thing in itself;
the bad thing is that they are unaware of the tremendous advances which
that science has made in the last half century.

As long as both physicists and statisticians and pure mathematicians
believe that quantum probability i1s ‘a different kind of probability’ this
bad state of affairs will persist. But I think there are a lot of signs that
this accepted wisdom 1is about to be thrown aside and the result will be

a tremendous enrichening both of mathematical statistics and of quantum
technology.
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4. CONCLUSION

The stories 1 have sketched above, and many others I could tell, show the
young science of statistics vigorously growing at the interface between math-
ematics and society. New developments in technology and society immedi-
ately set huge challenges to applied and to theoretical statisticians: how
to analyse data of growing complexity and how to answer the increasingly
complex questions which society poses. These challenges reverberate into
the heart of mathematics and sometimes answers are found using tools de-

veloped long ago in seemingly unrelated parts of mathematics, sometimes
the challenges stimulate new fundamental advances.

It should be obvious now whether I think of statistics as a fringe or a

frontier to mathematics. In my opinion it is part of the living frontier of
mathematics; intensely alive; intensely unpredictable.
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